南華大學數(shù)理學院導師:歐陽自根

發(fā)布時間:2021-11-20 編輯:考研派小莉 推薦訪問:
南華大學數(shù)理學院導師:歐陽自根

南華大學數(shù)理學院導師:歐陽自根內(nèi)容如下,更多考研資訊請關(guān)注我們網(wǎng)站的更新!敬請收藏本站,或下載我們的考研派APP和考研派微信公眾號(里面有非常多的免費考研資源可以領(lǐng)取,有各種考研問題,也可直接加我們網(wǎng)站上的研究生學姐微信,全程免費答疑,助各位考研一臂之力,爭取早日考上理想中的研究生院校。)

南華大學數(shù)理學院導師:歐陽自根 正文

[導師姓名]
歐陽自根

[所屬院校]
南華大學

[基本信息]
導師姓名:歐陽自根
性別:男
人氣指數(shù):1899
所屬院校:南華大學
所屬院系:數(shù)理學院
職稱:教授
導師類型:
招生專業(yè):應用數(shù)學

[通訊方式]
辦公電話:010-51688584
電子郵件:zigenouyang@163.com
通訊地址:南華大學數(shù)理學院

[個人簡述]
湖南省數(shù)學會常務理事,南華大學首屆研究生最喜愛的導師。指導研究生獲湖南省優(yōu)秀碩士學位論文1篇

[科研工作]
1989.04—1993.09,南華大學基礎(chǔ)部助教。1993.10—1998.06,南華大學基礎(chǔ)部講師。1998.07—2004.6,南華大學基礎(chǔ)部(數(shù)理學院)副教授。2004.07—至今,南華大學數(shù)理學院教授,其中2010.1--至今,單人數(shù)理學院院長。2010.04—2011.04,加拿大紐芬蘭紀念大學高級訪問學者[1] Huilan Wang, Zigen Ouyang* and Hengsheng Tang, A note on the shooting method and its applications in the Stieltjes integral boundary value problems, Boundary Value Problems (2015) 2015:102 DOI 10.1186/s13661-015-0359-8.[2] Zigen Ouyang, Dongyuan Liu, and Huilan Wang, Positive Solutions for Class of State Dependent Boundary Value Problems with Fractional Order Differential Operators, Abstract and Applied Analysis, Volume 2015, Article ID 263748, 11 pages.[3] Zigen Ouyang and Hongliang Liu, Solvability for a Fractional Order Three-Point Boundary Value System at Resonance, Abstract and Applied Analysis, Volume 2014, Article ID 419514, 15 pages.[4] Dongyuan Liu and Zigen Ouyang, Solvability of Third-Order Three-Point BoundaryValue Problems, Abstract and Applied Analysis, Volume 2014, Article ID 793639, 7 pages.[5] Zigen Ouyang and HuiWang, A Model for Influence of Nuclear-Electricity Industry on Area Economy, Mathematical Problems in Engineering, Volume 2014, Article ID 792307, 7 pages.[6] Hongliang Liu and Zigen Ouyang, Existence of solutions for second-order three-point integral boundary value problems at resonance, Boundary Value Problems 2013, 2013:197, 1-11.[7] Huilan Wang, Zigen Ouyang and Liguang Wang, Application of the shooting method to second-order multi-point integral boundary-value problems, Boundary Value Problems 2013, 2013:205, 1-10.[8] Z.G. Ouyang,C.H. Ou, James S.R.Wong, Solvability of three-point boundary value problems with resonance,Communication in Applied Analysis,17(2013)47-60.[9] Z. Ouyang, G. Li, Existence of the solutions for a class of nonlinear fractional order three-point boundary value problems with resonance, Boundary Value Problem, 2012,2012-68.[10] Z.G. Ouyang,Chunhua Ou, Global Stability and convergence rate of traveling waves for a nonlocal model in periodic media, Discrete and Continuous Dynamical Systems, SERIES B,17(2012)(SCI).[11] M.X. Liao, X.H. Tang, Zigen Ouyang, Changjin Xu, Dynamical properties of a class of higher-order nonlinear difference equations, Appl. Math. and Comput.?, 217 (2011) 5476-5479(SCI) .[12] Z.G. Ouyang, Y.M. Chen, S.L. Zou, Existence of positive solutions to a boundary value problem for a delayed nonlinear fractional differential system, Boundary Value Problem., Article ID 475126, 17pages, 2011(SCI).[13] Z.G. Ouyang, Existence and uniqueness of the solutions for a class of nonlinear fractional partial differential equations with delay, Comp.& Math. with Appl., 61(2011)860-870(SCI).[14] J.C. Zhong, Z.G. Ouyang, S.L. Zou, An oscillation theorem for a class of second-order forced neutral delay differential equations with mixed nonlinearities, Appl. Math. Lett.,24(2011) 1449-1454(SCI).[15] Z.G. Ouyang, J.C. Zhong, S.L. Zou, Oscillation criteria for a class of second-order nonlinear differential equations with damping term,Abst. and Appl. Anal. Article ID 897058, 12 pages, 2009(SCI).[16] F.Q. Yin, S.F. Zhou, Z.G. Ouyang, C.H. Xiao, Attractor for Lattice system of dissipative Zakaharov equation, Acta Mathematic Sinica: English Series, 61(2009)321-324(SCI).[17] X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence of speciesin nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls, Journal of Comput. and Appl. Math., 211(1) (2008), 1-10(SCI).[18]X.Y. Liao, Z.G. Ouyang and S.F. Zhou, Permanence and Stability of Equilibrium for a Two-Prey One-Predator Discrete Model, Appl. Mathe. and Comput., 186(2007), 93-100(SCI).[19]Z.G.Ouyang S.L.Zou S.F.Zhou J.D.Liao,Invariant set and attracting set for a class of delay discrete parabolic systems,Int. J. Appl。 Math. and Appl,1(2008).[20]X.Y. Liao, S.F. Zhou and Z.G. Ouyang, On a stoichiometric two predators on one prey discrete model, Appl. Mathe. Lett., 20 (2007), 272-278(SCI).[21]Q. S. wang, Z. G. Ouyang, J. D. Liao, Oscillation and asymptotic behavior for a class of nonlinear delayed parabolic differential equations, Appl. Math. Lett. 32(2006)151-154 (SCI).[22]J. H. Ma, S. F.Zhou, Z. G. Ouyang, Asymptotic synchronization in dissipative lattices of coupled oscillators, J. Math. Anal. Appl. Vol322, Issue 2(2006), 1111-1127 (SCI).[23]S. F.Zhou, F. Q. Yin, Z. G. Ouyang, Random Attrator damped nonlinear wave equations with white noise, SIAM J. Applied Dynamical Systems, 4(4)2005 (SCI).[24]歐陽自根,李永昆, 偶數(shù)階時滯微分方程的單調(diào)解, 數(shù)學研究與評論, 24(2004), 321-327.[25]Z. G. Ouyang, Y. K. Li, Q. G. Tang, Classifications and existence of positive solutions of higher-order nonlinear neutral differential equations, Appl. Math. and Comput.,148(2004), 105-120(SCI).[26]Z. G. Ouyang, S. F. Zhou, F. Q. Yin, Oscillation for a class of odd-order delay paraboic differential equations, J. of Comp. and Appl. Math., 175(2005), 305-319(SCI).[27]Z. G. Ouyang, S. F. Zhou, F. Q. yin, Oscillation for a class of neutral parabolic differential equations, Comput. & Math. with Appl., 50(2005), 145-155(SCI).[28]Z. G. Ouyang, Y. K. Li and M. C. Qing, Eventually solutions ofodd-oder neutral differential equations, Appl. Math. Lett., 17(2004), 159-166(SCI).[29]Z. G. Ouyang, Nnecessary and sufficientconditions for oscillation of odd order neutral delay parabolic differential equations, Appl. Math. Lett., 16(2003), 1039-1045(SCI).

[教育背景]
1983.09—1987.07,湖南師范大學數(shù)學系,獲理學學士學位。
1987.09—1989.01,云南大學基礎(chǔ)數(shù)學,研究生班。
2003.09—2006.07,上海大學運籌學與控制論專業(yè),獲理學博士學位。 以上老師的信息來源于學校網(wǎng)站,如有更新或錯誤,請聯(lián)系我們進行更新或刪除,聯(lián)系方式

添加南華大學學姐微信,或微信搜索公眾號“考研派小站”,關(guān)注[考研派小站]微信公眾號,在考研派小站微信號輸入[南華大學考研分數(shù)線、南華大學報錄比、南華大學考研群、南華大學學姐微信、南華大學考研真題、南華大學專業(yè)目錄、南華大學排名、南華大學保研、南華大學公眾號、南華大學研究生招生)]即可在手機上查看相對應南華大學考研信息或資源。

南華大學考研公眾號 考研派小站公眾號
南華大學

本文來源:http://www.scstrans.com/usc/yanjiushengdaoshi_541145.html

推薦閱讀